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The initial stage of the adjustment of a gravity current to the effects of rotation with
angular velocity f/2 is analysed using a short time analysis where Coriolis forces are
initiated in an inviscid von Kármán–Benjamin gravity current front at tF = 0. It
is shown how, on a time-scale of order 1/f , as a result of ageostrophic dynamics,
the slope and front speed UF are much reduced from their initial values, while the
transverse anticyclonic velocity parallel to the front increases from zero to O(NH0),
where N =

√
g′/H0 is the buoyancy frequency, and g′ = g�ρ/ρ0 is the reduced accelera-

tion due to gravity. Here ρ0 is the density and �ρ and H0 are the density difference
and initial height of the current. Extending the steady-state theory to account for the
effect of the slope σ on the bottom boundary shows that, without rotation, UF has
a maximum value for σ = π/6, while with rotation, UF tends to zero on any slope.
For the asymptotic stage when f tF � 1, the theory of unsteady waves on the current
is reviewed using nonlinear shallow-water equations and the van der Pol averaging
method. Their motions naturally split into a ‘balanced’ component satisfying the
Margules geostrophic relation and an equally large ‘unbalanced’ component, in which
there is horizontal divergence and ageostrophic vorticity. The latter is responsible for
nonlinear oscillations in the current on a time scale f −1, which have been observed in
the atmosphere and field experiments. Their magnitude is mainly determined by the
initial potential energy in relation to that of the current and is proportional to the
ratio

√
Bu = LR/R0, where LR = NH0/f is the Rossby deformation radius and R0 is

the initial radius. The effect of slope friction also prevents the formation of a steady
front. From the analysis it is concluded that a weak mean radial flow must be driven
by the ageostrophic oscillations, preventing the mean front speed UF from halting
sharply at f tF ∼ 1. Depending on the initial value of LR/R0, physical arguments show
that UF decreases slowly in proportion to (f tF )−1/2, i.e. UF /UF0

=F (f tF , Bu). Thus
the front only tends to the geostrophic asymptotic state of zero radial velocity very
slowly (i.e. as f tF → ∞) for finite values of LR/R0. However, as LR/R0 → 0, it reaches
this state when f tF ∼ 1. This analysis of the overall nonlinear behaviour of the gravity
current is consistent with two two-dimensional non-hydrostatic (Navier–Stokes)
and axisymmetric hydrostatic (shallow-water) Eulerian numerical simulations of the
varying form of the rotating gravity current. When the effect of surface friction is
considered, it is found that the mean movement of the front is significantly slowed.
Furthermore, the oscillations with angular frequency f and the slow growth of the
radius, when f tF � 1, are consistent with recent experiments.
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1. Introduction
Characteristic features of many geophysical flows, on a wide variety of length and

time scales, are sloping interfaces that separate zones of less dense and more dense
fluid. Because long waves on stable layers of fluid tend to travel faster the deeper the
layer, it means that fluid far from the deep part of the zone tends to move towards the
shallower leading-edge of the zone. This process tends to increase or maintain high
gradients of density near the boundary, which becomes a sharply defined interface.
The higher hydrostatic pressure at the base of the zone of dense fluid forces it to
move into the lower part of the zone of less dense fluid, producing the well-known
phenomena of gravity currents (Simpson 1997).

On the mesoscale (of the order of 10–100 km in the atmosphere), there may be
external shear flows opposing the movement of the gravity current fronts (Rottman,
Hunt & Mercer 1985) or strong externally produced mixing (e.g. Linden & Simpson
1989; Noh & Fernando 1993). In both of these cases the fronts tend to take the
appearance of a wedge with a low angle. On larger meso-synoptic scales, the Earth’s
rotation causes the front to slow down, even bringing it to a standstill as shown in
the laboratory by Chia, Griffiths & Linden (1982) and Ivey (1987). In this case a
‘geostrophic front’ develops, which differs from a non-rotating gravity current in that it
has a lower slope. Also, significant motions parallel to the frontal surface are induced
both within the current and outside it. The flows parallel to the frontal surface
balance the hydrostatic pressure gradients and Coriolis forces, and may lead to a
stationary form of geostrophic front, as first explained by Margules (1906). However,
there is no theory to show (a) that this equilibrium state is always the limiting
solution for density currents that are initially not in equilibrium and, if so, whether
(b) the limit is independent of the initial conditions, (c) whether the steady state is
reached in a finite period of time and distance from initial release, (d) whether it is
reached monotonically and (e) how viscosity, turbulence and surface friction affect its
behaviour. Some gravity currents move over fluid layers, which may also affect frontal
dynamics. Such questions may be useful to meteorologists who are generally sceptical
about the relevance of equilibrium geostrophic fronts to real atmospheric flows.

Experiments by Hallworth, Huppert & Ungarish (2001) show how the radial spread-
ing of an axisymmetric gravity current affected by Coriolis forces slows rapidly over
a rotation period and then oscillates. It is not clear whether the mean radius of the
current reaches a fixed value or continues to increase slowly. In their hydrostatic
analysis, they successfully account for the initial stages of the gravity current’s trans-
formation into a geostrophic front, but they assumed for simplicity that the speed
of the current’s front was unaffected by rotation, although this is not valid when a
front becomes a geostrophic front. Frontal dynamics tends to be discussed, especially
by theoretical meteorologists and oceanographers, in terms of two distinct idealized
models, namely, the density current which includes no representation of Coriolis effects
and the balanced semi-geostrophic (SG) front which develops from larger-scale flows.
For meteorological applications see Hoskins & Bretherton (1972) and Parker (2000).
Gravity currents and fronts on sloping surfaces are of particular significance in
oceanography where rotation generates very strong flows along the slope. The contro-
versial question here is whether or how such currents stop moving down the slope
when rotation effects are present (e.g. Lentz & Helfrich 2002).

Our first goal is to study how the form of a density current front develops when
the effects of rotation are included. Although Rotunno (1983) reviewed how a long-
wave analysis explains many features of sea breeze gravity currents and the effects



Effects on the fronts of density currents 287

x1

x3

x2

LR

H0

(i)

H

R0

~f /N α = π/3α < π/3

Ω
(iv) (iii) (ii)

Figure 1. Typical stages in a density current front, with slope tan(α), as it evolves towards
that of a geostropic front. The Rossby radius of deformation LR is greater than the initial
radius R0 of the current. (i) Initial state; (ii) gravity current; (iii) evolving geostrophic front;
(iv) geostrophic front. The dashed arrows denote velocity vectors in a rotating frame (but not
moving with the front).

of rotation on them, he did not analyse the fronts themselves. His work, as with the
earlier work of Benjamin (1968), showed that features of the current/frontal move-
ments are largely independent of the details of the front. Our second goal is to study
the evolution of the front when the flow is close to being in geostrophic balance,
and when the effects of nonlinear ageostrophic oscillations are significant. In their
daily task of forecasting the movement and evolution of fronts, meteorologists are
well aware of the need to consider unsteady motions in fronts because of their effect
on horizontal divergence and convergence, and on the mean motion of the front.
Despite its dynamical significance, this ageostrophic component is not included in
current models or even concepts of fronts (Parker 2000); for a review see Norbury &
Roulstone (2002).

The different stages and types of nonlinear adjustment of a front (see figure 1)
can be classified in term of how the horizontal scale R0 of initial disturbance of
the dense layer relates to the Rossby radius of deformation LR , which is defined as
LR =(H0g�ρ/ρ0)

1/2/f for two-layer systems (where �ρ is the density difference) and
LR =NH0/f in the case of a well-mixed region surrounded by fluid with continuous
stratification (H0 is the depth of disturbance and N is the buoyancy frequency). Our
approach is to describe the flow regimes in terms of their nonlinear geostrophic adjust-
ment to the equilibrium state, where initially R0 <LR , R0 ≈ LR or R0 > LR . The Burgers
number Bu= (LR/R0)

2 which characterizes the relative importance of the effects of
rotation and stratification (McWilliams 1985) plays a key role in distinguishing
between different regimes, with Bu 	 1 corresponding to rotation dominated and
Bu � 1 corresponding to stratification dominated flows.

The geostrophic adjustment is relatively slow when Bu � 1 and is only weakly
coupled to ‘quasi-inertial’ oscillations with large horizontal and small vertical scale.
Therefore these oscillations tend to persist, as is observed in the atmosphere and
the ocean (Sidi & Barat 1986; Maas & van Haren 1987) and in the experiments of
Hallworth et al. (2001). These two types of motion are studied here both computa-
tionally and theoretically.

By contrast in the regime where Bu 	 1, the characteristic sub-synoptic gravity
waves and gravity currents adjust fast in the mean, and have a quasi-steady behaviour
under the influence of rotational effects. Barotropic instabilities of the front are a
significant feature of these flows (e.g. Linden & Simpson 1989). This paper focuses
on the various aspects of the unsteady nonlinear adjustment in the range of values
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Bu � 1 to Bu = O(1) regime. Note than in the Bu= O(1) regime, R0 ≈ LR and the
effects of stratification and rotation on these scales are balanced, but this does not
necessarily imply a steady flow.

These classifications of flow regimes also correspond to different approximations of
the equations of geophysical flows (see Charney 1948; Atkinson 1981; Cullen 2002).
On synoptic scales where R0 is much greater than LR , the flows are quasi-geostrophic
and hydrostatic, while on the meso-scale where R0 ≈ LR , the flows are non-geostrophic.
In both cases they are hydrostatic if R0 � H . At the micro-scale where R0 	 LR

the flows are non-geostrophic. The dynamics of the front is non-hydrostatic and its
structure is affected by turbulence (Westerweel et al. 2002). Classical linear geostrophic
adjustment theory (e.g. Haltiner & Williams 1980; Gill 1982) uses linearized shallow-
water equations to calculate the end state of geostrophic balance given general initial
data not satisfying the geostrophic relation. These results have been extended to
nonlinear regimes of rotating shallow-water and Euler–Boussinesq (primitive) equa-
tions, extending both the general mathematical analyses of Babin, Mahalov &
Nicolaenko (1997a, c, 1998, 2002) and Embid & Majda (1996), who obtained error
bounds for solutions, and the study of weakly nonlinear geostrophic adjustment flows
by Reznik, Zeitlin & Jelloul (2001). The remarkable feature of the nonlinear terms
(over the ‘flat’ areas of the current, excluding the frontal zones) is that they have
a weak effect on the linear form and decay of the oscillation. A simple physical
argument is proposed.

This paper is organized as follows. In § 2, we consider perturbations for small f t

from the von Kármán (1940) solution for a gravity current head in a weakly rotating
flow, and then generalize these results to gravity currents on sloping surfaces, using the
approach of Rottman et al. (1985). Two fluid systems are considered here. The analysis
shows that on a horizontal surface, the slope of the front decreases and progressively
vertical accelerations decrease implying that the vertical pressure gradient becomes
hydrostatic. If the solution obtained with a perturbation analysis for f t 	 1 is
extrapolated, it leads to an estimate for the speed of the gravity current front and the
time when the front stops. When the parameter f t becomes of order one, there is a
transition to another regime which is analysed with direct numerical simulations in
§ 2.3. In § 2.2, we analyse the impact of sloping surfaces on gravity currents. In § 2.3,
we compare our theoretical results for inviscid density currents over level surfaces
with numerical solutions to Navier–Stokes equations (Pacheco & Peck 2000; Pacheco
2001) which simulates a gravity current starting from rest and is particularly suitable
for studying frontal dynamics. In § 3, a numerical simulation is presented for the
inviscid shallow-water code, that accurately models the final stages of the front where
its slope is small and the hydrostatic approximation is valid (Pacheco & Pacheco-Vega
2003). We also present detailed transition curves for initial conditions where LR <R0

lie between 0.33 and 0.66. Rotation is applied after the gravity current is initiated, so
that its effect can be seen more clearly. Significant nonlinear oscillations are observed.
A summary of the results is presented in § 4.

2. Short time effects of weak rotation on gravity current fronts
2.1. Theoretical analysis on a horizontal surface

2.1.1. Formulation of the problem

Using the notation of figure 2, we now state the equations for the velocity U and
pressure P fields within the current [C] and in the exterior region [E]. The variables
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Figure 2. Flow configuration for a gravity current that exists in the space of 0 � Z � ZF (x, t).
The front [F] of the density current is travelling at a velocity −UF in the absence of background
rotation. [C] and [E] correspond to the interior and external flow regions and are indicated on
the figure. (i) is initial t = 0; (ii) current f −1 � t > 0.

in each of these domains are identified by superscripts (C) and (E), respectively. It is
assumed here, following Benjamin (1968), that near the front [F] the flow is inviscid
and that no mixing takes place at the moving interface between the two domains,
despite a discontinuity in tangential velocity across it. Thus we neglect the interfacial
turbulent shear stresses, although in practice they contribute to the mean motion
within [C] and the sharpness of the interface between [C] and [E] (Britter & Simpson
1978; Westerweel et al. 2002). In a later section, we consider how body forces and the
changing shape of the interface [I] between [C] and [E] induce a motion U (C) within
[C]. The density within [C] is assumed to have a uniform value that is greater by
�ρ than the density in [E] where the density is ρ0. Note that �ρ is small compared
to ρ0, so that the Boussinesq approximation can be applied. Since the acceleration
due to gravity g is much greater than the vertical and horizontal acceleration of the
fluid flow, the effect of this density variation is only to produce a buoyancy force
g�ρ/ρ0 = g′ x̂3 (unit vectors are denoted here by x̂i). The pressure is normalized on
ρ0 (and the ambient hydrostatic pressure gradient (−gρ0) is subtracted out).

In the initial boundary-value problem, we solve the local solution near the front,
which therefore can be applied to other shallow currents. It is assumed that, initially,
for tF = (t − TR) < 0, before the rotational Coriolis force is applied at t = TR , the
front of the density current at x1 = + xF is travelling steadily at a velocity (−UF ). This
enables the two-dimensional non-hydrostatic equations to be analysed in a coordinate
frame (xF1

, xF3
) moving at a velocity −UF for tF > 0.

We begin by considering a gravity current that exists in the space 0 � xF3
� ZF (xF ),

where ZF = 0 for xF1
= x1 − XF < 0 and ZF tends to a constant height H far from

the front (i.e. where xF1
/H → ∞). As we see later and in § 3.2, when we analyse

the overall development of a real current, UF and H vary with time from their
initial values of UF0

and H0; but slowly on the time scale H/UF . This situation
corresponds to conditions on the left-hand side of figure 2. In § 2.1.3, we evaluate how
the flow changes for t > TR . Experimentally, this implies that initially, in the dense
layer over a radius R0, Coriolis forces are weak compared to the inertial forces, i.e.
LR/R0 � 1. The zero-order approximation in § 2.1.2 is valid when the time (in relation
to f −1) is small, i.e. f tF 	 1. The matching conditions across the interface, defined
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as GF = xF3
− ZF (x, t) = 0, are that the difference in normal velocity across it is zero

and that the interface is a fluid surface so that its constituent fluid elements always
remain within it.

The governing differential equation and boundary conditions can now be stated. In
[E],

DU (E)

Dt
+ f x̂3 × U (E) = −∇P (E), (2.1a)

∇ · U (E) = 0, (2.1b)

while in [C],

DU (C)

Dt
+ f x̂3 × U (C) + g′ x̂3 = −∇P (C), (2.2a)

∇ · U (C) = 0. (2.2b)

The kinematic boundary conditions applied at xF3
= 0, are

U (C) · x̂3 = U (E) · x̂3 = 0. (2.3)

Far upstream of the current (xF1
→ −∞),

U (E) → UF x̂1, P (E) = const. = 0, (2.4a)

xF1
→ ∞(GF > 0), U (E) → UF x̂1, P (E) = 0. (2.4b)

For tF < 0 when there is no rotation (f = 0) and D/Dt = 0, the far-field boundary
condition in [C] is then U (E) = 0. With rotation, when D/Dt 
= 0 and tF > 0, a boundary
condition consistent with the exterior solution is derived in § 2.1.2.

Across the interface between regions [C] and [E] defined by GF = xF3
− ZF (xF1

, t) = 0
the conditions are: (

U (E) − U (C)
)

· ∇GF = 0, P C = P E, (2.5a)

and
∂ZF

∂t
+ 1

2

(
U (E) + U (C)

)
·
(

x̂3 − x̂1

∂ZF

∂xF1

)
= 0. (2.5b)

The solution is obtained for small time (f tF 	 1) using Maclaurin series expansions;
so that

U (E)(x, t) = U (E,0)
(
xF1

, xF3

)
+

∞∑
n=1

(f tF )nU (E,n)
(
xF1

, xF3

)
, (2.6a)

and similarly for U (C), P (E) and P (C). Continuity (2.2b) can be satisfied by expressing
U in form of a streamfunction: Ψ (E,n)(xF1

, xF3
). Note that, when f = 0, in the gravity

current U (C,0) = 0 (Benjamin 1968).
The height ZF of the current also has an expansion

ZF

(
xF1

, tF
)

= Z
(0)
F

(
xF1

)
+

∞∑
n=1

(
f ntn+1

F

)
Z

(n)
F

(
xF1

)
. (2.6b)

2.1.2. Solution for zero order

The zeroth order steady-state solution for the exterior region [E], Ψ (E,0), has a local
(von Kármán) form for the inviscid and irrotational upstream flow, that is defined
by the slope angle α of the front (where ZF = xF1

tan α), namely, of the front (where
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ZF = xF1
tan α), namely,

Ψ (E,0) = Ar
β
F sin(β(π − θ)), (2.7a)

where r2
F = x2

F1
+ x2

F3
, θ = tan−1(xF3

/xF1
), where A is a dimensional constant that defines

the strength of the flow around the stagnation point and β = 1/(1 − α/π). Thus, on
xF3

= ZF or θ = α, ∣∣U (E,0)
∣∣ = βAr (β−1) = βA(ZF / sin α)(β−1). (2.7b)

Matching the vertical hydrostatic pressure field in the front to the Bernoulli pressure
gradients in the external flow, leads to

− 1
2

∣∣U (E,0)
(
xF1

, ZF

)∣∣2 = −g′ZF . (2.8)

Thence from (2.7),

2(β − 1) = 1, whence β = 3/2, α = π/3; (2.9)

also

A2 = g′(4
√

3/9). (2.10)

Note that the value of A cannot be determined in terms of UF by this calculation,
since its dimensions (when β = 3/2) are L1/2T −1.

However (for reasons given by Benjamin 1968), downstream of the front where the
height of the current ZF reaches a constant value H , U (E,0) approaches its upstream
value UF x̂1, and P (E,0) = 0. It follows from (2.2a) that

0 =
1

2U 2
F

− Hg′, whence H = 1
2

(
U 2

F

g′

)
. (2.11)

The transition between the von Kármán stagnation point flow and this downstream
flow requires the surface of the current to have a maximum height Hmax where
xF1

= xmax. There has to be some dissipation in the flow between xF1
= xmax and

x → ∞. Approximate theory for this region and experiments show that Hmax ≈ 1.2H

(Britter & Simpson 1978) and A ≈ UF /H 1/2.
To estimate the flow far upwind and above the gravity current, it can be assumed

that the potential flow in [E] over the current is similar to that over a hill or an airfoil

with a low slope (e.g. Milne-Thompson 1968). Therefore, when
√

x2
1 + x2

3/H � 1,

Ψ (E,0) ≈ −UF H tan−1

(
xF3

xF1

)
+ UF xF3

. (2.12)

2.1.3. Leading-order effects of weak rotation

To calculate the terms of order f tF and (f tF )2 in the expansion (2.6), we assume
that it is a regular expansion, which implies that the shape (xF3

= ZF (xF1
)) of the front

is unchanged to first order. We denote these terms by Ũ (E,1), Ũ (E,2). Then we consider
whether it is necessary to relax this constraint, to calculate the complete terms at
these orders (as in the calculation of the shear effect by Rottman et al. 1985).

As usual in geophysical analysis, take the xF1
coordinate to the east, and xF2

coordi-
nate to the north. We develop a solution based on the assumption that the front
remains straight and parallel to the xF2

-axis. Therefore all gradients parallel to the
xF2

direction are assumed to be zero (this is a close approximation to the flow near
the front of an axisymmetric current, analysed in § 2.3). Because a moving coordinate
system is used in a fluid with an overall rotation, this effectively introduces a spanwise
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or north–south pressure gradient ∂P∞/∂xF2
= −f UF . Thus, to first order, (2.1) becomes

Ũ
(E,1)
2 + U

(E,0)
1 = UF (2.13a)

and

Ũ
(E,1)
1 + U

(E,0)
3 = 0; (2.13b)

thence P (E,1) = 0. Thus, since there is no motion perpendicular to it, the rate of change
of the frontal surface is unchanged to this order, so that Z

(1)
F =Z

(2)
F =0. Hereinafter,

the tilde superscripts for the second-order terms can be dropped. There are significant
effects in the current [C] caused by the pressure gradient. Note that from (2.13a) and
(2.4a) U

(E,1)
2 → 0 as x → −∞. To first order,

U
(C,1)
1 = 0, U

(C,1)
2 = −UF0

, U
(C,1)
3 = 0. (2.13c)

Note that the initial effect of rotation is to induce anticyclonic motion U2(>0) not only
near the front in [E], but everywhere inside the current [C] (see also the Appendix
A). The motions in [E] are given (to second order) by:

2U
(E,2)
1 − U

(E,1)
2 = −∂P (E,2)

∂xF1

, (2.14a)

2U
(E,2)
3 = −∂P (E,2)

∂xF3

, (2.14b)

2U
(E,2)
2 + U

(E,0)
1

∂U
(E,1)
2

∂xF1

+ U
(E,1)
3

∂U
(E,1)
3

∂xF3

+ U
(E,1)
1 = 0, (2.14c)

and to third order in [C],

2U
(C,2)
2 + U

(C,1)
1 = 0, (2.14d)

3U
(C,3)
2 + U

(C,2)
1 = 0. (2.14e)

Therefore, from (2.13b), U
(E,2)
2 = 0. Using the continuity equation (and the fact that

∂U2/∂xF2
= 0 to all orders), we can express U (E,2) in terms of the second-order stream-

function Ψ (E,2), namely,

U
(E,2)
1 =

∂Ψ (E,2)

∂xF3

, U
(E,2)
3 = −∂Ψ (E,2)

∂xF1

. (2.15a)

Taking the curl of (2.14), using (2.13), leads to an inhomogeneous equation for Ψ (E,2)(
∂2

∂x2
1

+
∂2

∂x2
3

)
Ψ (E,2) + 1

2

∂2

∂x2
3

Ψ (E,0) = 0. (2.15b)

Following the assumption set out at the beginning of § 2.1.3, the boundary between
[C] and [E] is not changed, to order (f tF )2. Therefore, Ψ (E,2) satisfies (2.15b) in the
same domain as Ψ (E,0) (i.e. outside the current whose shape is still the same). Its
boundary/matching conditions are set out in (2.3) and (2.5) where

Ψ (E,2) = 0 on xF3
= 0 for xF1

< 0,

Ψ (E,2) = Ψ (C,2) on xF3
= Z

(0)
F = xF1

tan α for x > 0.

}
(2.15c)

Here, α = π/3 and Ψ (C,2) is the streamfunction for the perturbation flow with the
current [C]. Equation (2.15b) near the stagnation point, as rF → 0, using (2.7) and
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(2.9), reduces to

∇2Ψ (E,2) = 3
4
Ar

−1/2
F sin

(
1
2
(π − θ)

)
, (2.15d)

and, as (r/H ) → ∞, to

∇2Ψ (E,2) =
q (0)

r2
F

sin(2(π − θ)), (2.15e)

where q (0) ≈ UF0
H is the effective source strength of the far-field perturbation for the

zero-order solution in (2.12). Therefore, the solutions as r/H → 0, are

Ψ (E,2) = βF r
3/2
F sin

(
3
2
(π − θ)

)
+ 3

8

(
Ar

3/2
F sin

(
1
2
(π − θ)

))
+ 1

2

UF xF3

2
, (2.16a)

where β is an unknown coefficient for the complementary function. As rF /H → ∞,

Ψ (E,2) = − 1
4
q (0) sin(2(π − θ)) + q (2)(π − θ). (2.16b)

Since the complementary function is zero on the boundary of [E], its arbitrary
coefficient β can be shown to be zero when the pressure fields are balanced. Note the
term UF xF3

/2 in the near field is the Coriolis induced flow that enters into the current
(which effectively slows it down); but since U (E,2) → 0 as (rF /H ) → ∞, there must be
a balancing far-field source solution, such that q (2) � UF (H/2).

Now, by applying the boundary conditions (2.5), the second-order solution for
Ψ (C,2) inside the current can be derived. Since there is no zeroth-order motion in [C],
it follows that

∇2Ψ (C,2) = 0. (2.17)

The second-order velocities normal to the surface GF must match each other on
xF3

= Z
(0)
F (x) and satisfy (2.3) on xF3

= 0.
The conditions far from the front can be derived from (2.2a). Since these are

constant in [E] and [C], it follows that ∂P (C,2)/∂xF1
= 0 and therefore from (2.13c) as

xF1
→ ∞, Ψ (C,2) = (UF /2)xF3

. Thus, as rF /H → 0,

Ψ (C,2) = 3
16

√
3Ar3/2

F sin
(

3
2
θ
)

+ 1
2
UF xF3

. (2.18)

Hence, the second-order term for the horizontal perturbation velocity in the current
(on the ground at xF3

= 0) at a radius rF from the front [F] is

U
(C,2)
1 = 9

32

√
3Ar1/2

F + 1
2
UF0

. (2.19)

Thence, in fixed coordinates (denoted with an asterisk) the total horizontal velocity
on the ground in the current is

U
(C)
1 = −UF0

(
1 − 1

2
(f tF )2

)
+ 9

32

√
3Ar1/2

F (f tF )2. (2.20)

Typically, this solution is valid for rF � H . Thus, since A � UF /H 1/2, the velocity
decreases from the front, where rF =0, to its minimum value where rF � H , given by

U
(C)
1(min) � UF0

{
−1 + (f tF )2

(
1
2

+ 9
32

√
3
)}

. (2.21)

Note that the velocity at the leading edge of the front (where rF = 0) slows down
less than at the point of greatest thickness. In other words, the front is moving faster
than the fluid in the bulk of the current which is why the slope decreases with time.

If the solution (2.20) for rF = 0 is extrapolated, it leads to an approximate estimate
for the speed of the front and the time when the front stops (taken from when rotation



294 J. C. R. Hunt, J. R. Pacheco, A. Mahalov and H. J. S. Fernando

was initiated and the front was in a fully developed state), namely

UF = −UF0
(1 − (f tF )2/2), so that UF = 0 when f tF �

√
2. (2.22)

It follows from (2.19) and (2.14e) that

U2 = −UF0
f tF −

((
9
32

√
3
)
Ar1/2

F + 1
2
UF0

)
1
3
(f tF t)3, (2.23)

which shows that the transverse (anticylonic motion) increases with time and increases
along the current from the front to a maximum value where rF ∼ H/α. Therefore, at
tF =

√
2/f , the transverse velocity at rF = 0 is

U2 � −1.9UF0
, (2.24a)

and at rF ∼ H/α (where α � 0.1),

U2 � −3UF0
. (2.24b)

Of course, this extrapolation is only indicative. At greater time, when the parameter
f tF becomes of order one, there is a transition to another regime which is considered
in § § 2.3 and 3.2.

The changes to the frontal surface in a fixed rotating frame can be derived (to
order (f tF )3) by considering the azimuthal velocity at the front, from (2.18),

Z∗
F =

(
x∗ − UF0

t +
UF0

2

f 2t3
F

8

)
tan α, (2.25)

where α = (π/3) − (3
√

3/32)ArF
1/2f 2t3

F .
This shows how the slope decreases very rapidly at the front (in fact, dZF /drF is

singular as rF → 0). The change of shape of the current when terms of order t3
F are

considered, is given by

ZF = xF1
tan α − cos α

∫ tF

0

∂Ψ (C,2)

∂rF

(f τ )2dτ =
√

3xF1
− 3

64

√
3Ar1/2

F f 2t3
F , (2.26)

where xF1
= x∗

1 − UF0
t + UF0

f 2t3
F /16.

For very wide density currents (with scale L � LR), the movement of the front does
not affect the height H (or the density) in the density current. In that case, its average
slope α over the front of the current αC is determined by the front dynamics, which
are essentially two dimensional. It follows that in the geostrophic limit when f tF � 1,
the average slope is

αC ∼ H∫ √
2/f

0

UF dt

� H

UF0
/f

� f√
g′/H

= f/N, (2.27)

where N is the frequency of long-wavelength oscillations on the density current. Note
that in this limit the transverse velocity U2 estimated by (2.24) is of the same order as
(but larger than) Margules’ (1906) value derived from (2.27) assuming a sloping front
and geostrophic equilibrium, namely αCg′/f =

√
g′H . Thus, at least for very wide

currents, the small time expansion indicates a monotonic trend to the geostrophic
equilibrium solution. Because the value of U2 outside the density current obtained
from this linear theory (see figure 2) exceeds the asymptotic value when f tF ∼ 1,
it produces an excess pressure gradient in the x1-direction. This is why the linear
theory underpredicts (by O(f −1)) the time to slow down the current. For a physical
discussion of axisymmetric currents see Appendix A.1.
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Figure 3. Density current on a sloping surface.

2.2. Fronts of density currents on sloping surfaces

2.2.1. Motivation and background

In many geophysical and environmental flows, density currents are found on sloping
surfaces, the most well known being the current of snow particles in an avalanche
and the slope katabatic flows occurring at night in mountainous areas. Another
example is the katabatic flow along the slopes of the Antarctic plateau which extend
over 1000 km and have vertical scales of order 1 km (Chen, Boyer & Tao 1993). In
the ocean, flows of order 10−1 m s−1 occur down slopes with gradients (σ ) of 10−2

to 10−1 over distances, of order of 102 km, that are much greater than the Rossby
deformation radius NH/f of 10 km. In particular, gravity currents originating owing
to river water discharging into coastal oceans extend tens of kilometres seawards
(Legeckis & Creswell 1981; Creswell & Golding 1986), and it is noteworthy that these
gravity currents are associated with large-amplitude unstable waves and eddies having
horizontal lengths of order 50–100 km implying a strong influence of nonlinear dyna-
mics in the adjustment process (Qiu & Imasato 1988). Most previous studies involving
slope flows and the front temperature have been experimental (e.g. Britter & Linden
1980, hereinafter referred to as B&L). Many theories for steady currents have neglec-
ted the influence, if any, of fronts (e.g. Turner 1973, but see B&L).

The purpose of this brief section is to point out, for completeness, the inviscid
solution for steady gravity current fronts and geostrophic fronts on slopes and how
these flows relate to those behind the front. As with currents on horizontal planes, the
inviscid gravity current horizontal analysis gives physical insights and useful estimates
for density currents.

2.2.2. Inviscid solution for gravity current on a sloping surface

Consider a current with density ρE +�ρ proceeding steadily down (or up) a slope
(of σ ) with velocity UF (see figure 3 for flow configuration). Unlike the case of a
current on a horizontal plane, the local steadiness of currents mostly depends on
the existence of a balance between those stresses that decelerate the flow caused
by the shear stress gradient (∂τ/∂xF3

) and inertial forces (LH −1∂(U 2H )/∂x) and
the accelerating buoyancy forces acting down the slope �ρg sin σ . As explained by
Turner (1973) and demonstrated for the case of atmospheric gravity currents by
Manins & Sawford (1979), the latter of these two effects, the inertial force associated
with entrainment, is the dominant decelerating force. This balance behind the front
is necessary for fluids where the density in the current is a significant fraction of that
in the external flow in [E]. However, where the density of the fluid in the gravity
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current is negligible (e.g. bubbles, where (ρ + �ρ/ρ) 	 1) the flow is steady because
of a balance of inviscid forces in the external region [E]. In either case, if the flow
reaches a steady state, then an inviscid analysis is the leading-order approximation
near the front because here inertial and buoyancy forces are large relative to the
Reynolds stresses. This implies, as in § 2.1, that in the frame of reference of the front,
U (C) = 0 and that U (E) = 0 at the stagnation point.

In order to balance the linear variation of hydrostatic pressure in [C] with the
pressure drop produced by acceleration along the interface, it is necessary as before
that α = π/3. However, the constant A in (2.10) which is increased slightly, is now
given by

A2 = g′ 4
9
2 sin

(
1
3
π + σ

)
. (2.28)

This formula can be used (as on a level plane) to estimate UF , since A2 � U 2
F /H .

Thus,

UF ≈
√

g′H 2
3

√
2 sin1/2

(
1
3
π + σ

)
. (2.29)

The result of (2.28) shows that A2 is a maximum when σ = π/6 (=30◦), when it
is (2/

√
3) times its value at σ =0 and a minimum when σ = π/2, when A2 is 1/

√
3

times its value at σ = 0. Laboratory observations of Noh & Fernando (1992) for a
volume release are consistent with the results that α = π/3 on a slope. The implication
of (2.29) is that for 0 <σ < π/3, UF (for given H ) increases by less than about 7 % and
for 0 <σ < π/2 the variation is less than 30 %. B&L find an even smaller variation
(for π/30 � σ < π/2), but they do find that the maximum in UF occurs when σ = π/6.
The result (2.29) agrees well with the measurements of long bubbles in a sloping tube
by Zukoski (1966) which is a physical situation closer to the idealized model.

2.2.3. Geostrophic fronts on a slope

The effect of rotation on density currents over a plane with slope σ , over a period
of order f −1 is also to bring the gravity current to rest and to set up an anticyclonic
motion within [C] (e.g. Lentz & Helfrich 2002). We consider the steady-flow solution
at the front controlled by the Coriolis and hydrostatic forces.

As in § 2.1.2, in the asymptotic state where f tF � 1, the geostrophic gradient in the
front parallel to the surface is

∂P

∂xF1

= f cos σU (C) − g′ sin σ, (2.30a)

while the normal pressure gradient is hydrostatically determined, so that

∂P

∂xF3

= −g′ cos σ. (2.30b)

The boundary condition is that P = Ps = constant on ZF = xF tan(α). It follows that
the horizontal velocity in the current parallel to the front is given by

U
(C)
2 (σ ) = g′ 1

f
(tan α + tan σ ). (2.31)

Therefore, the ratio of this cross-front velocity on a slope σ to its value on a horizontal
plane is

U
(C)
2 (σ )

U
(C)
2 (σ = 0)

=
tan(α) + tan(σ )

tan(α)
. (2.32)
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Since for a front in geostrophic equilibrium on a horizontal level plane

α � f

(g′/H )1/2
�

(
f

N

)
∼ 10−2,

and since from the analysis of § 2, the value of α is not changed by a small slope,
the solution (2.32) shows that, even on slopes where σ > 10−2, anticyclonic velocities
generated near the front are significantly larger than on a flat surface. Therefore, large
turbulent stresses and mixing would be initiated which would control this motion
as the laboratory experiments (simulating Antarctic flows) of Chen et al. (1993)
demonstrate. Another prediction of this analysis is that, since from (2.28), A increases
with bottom slope (σ ), it follows from (2.24a) that the slope of the front relative to
the surface decreases more rapidly with time on a slope.

Comparison with numerical simulations of fronts on a slope without and with
rotation are made in § 2.3.

2.3. Eulerian numeriacal simulation

Time-dependent non-hydrostatic calculations of buoyancy-driven currents can be
compared with the above inviscid solutions, where the two-phase flow motion of
the gravity current is analysed in a two-dimensional domain. The gravity current is
released along a floor of a tank of height D and length L containing a homogeneous
fluid of density ρ0, as shown in figure 2. The initial volume of heavy fluid, of
density ρ, has the shape of a right parallelepiped of height H0 and length R0. The
equations governing the flow in the Boussinesq limit, written in the primitive variable
formulation are:

∂Uj

∂xj

= 0, (2.33)

∂Ui

∂t
+

∂

∂xj

(UjUi) = − 1

ρ0

∂p

∂xi

− ρ − ρ0

ρ0

gi − εijkfjUk, (2.34)

∂ρ

∂t
+

∂

∂xj

(ρUi) = κ
∂2ρ

∂xj∂xj

, (2.35)

where i, j = 1, 3; Ui represents the Cartesian velocity components; p is the pressure;
ρ, �ρ and ρ0 represent density, density difference and reference density; κ is the
coefficient of diffusion for density; gi the gravity, and fj the Coriolis parameter. (Note
fj is twice the angular velocity and is applied at time TR). The boundary conditions
at t = 0 are

Ui = 0 (0 � x1 � L, 0 � x3 � D), (2.36)

ρ =

{
ρ0 + �ρ (0 � x1 � R0, 0 � x3 � H0),

ρ0 elsewhere.
(2.37)

The boundary conditions for t � 0 on all boundaries are

Uini = 0, (2.38)

ni

∂Uj

∂xi

= 0, (2.39)

ni

∂ρ

∂xi

= 0. (2.40)

The non-staggered-grid layout is employed in this analysis. The pressure and the
Cartesian velocity components are defined at the cell centre and the volume fluxes
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are defined at the midpoint of their corresponding faces of the control volume in
the computational space. We use a semi-implicit time-advancement scheme with the
Adams–Bashforth method for the explicit terms and the Crank–Nicolson method for
the implicit terms as described by Zang, Street & Koseff (1994). In this method, the
density variation is computed by coupling the transport equation for density with the
momentum equation in a Eulerian frame. Slip boundary conditions were specified
along the walls. The simulations were initialized with the fluid at rest. Note that the
diffusivity κ is non-zero for numerical stability, but its value has a negligible effect on
the results.

As the gravity current is released from the rest, a mutual intrusion flow develops
from an initial state as the gravity current evolves in time. After a brief acceleration
phase, the front reaches a constant velocity. Then, the effect of rotation is initiated (at
t = TR) causing a decrease of the front velocity in the x1-direction. After some time,
the front stops and a sequence of oscillations follow.

In order to avoid the effects of the upper boundary, the initial height H0 was 1/5
of the depth D. For the simulations reported here D = 5 m, L = 10 m, R0 = 2 m,
g = 10 m s−2, ρ0 = 1.0 kgm−3 and �ρ = 0.1 kgm−3. The computational mesh had
(1000 × 500) grid points for a value of molecular diffusivity κ = 2.5 × 10−4 m2 s−1.
The position of the front was assumed to be at the point where the local density at
the bottom (sweeping from right to left) reached a value of 98 % of the gravity current
density (1.08 kgm−3). The value of the Coriolis parameter was set to f =1.5 s−1 and
the time at which rotation was initiated was set to TR = 4.5f −1.

The position and velocity of the front for H0/D =1/5, so that LR/R0 = 0.33 are
shown in figure 4 as function of dimensionless time f tF (bottom horizontal axis)
with and without rotation for slope values of σ =0, π/12. The Coriolis parameter
f = 1.5 s−1 was used in the normalization of time (for both the rotating and non-
rotating cases) so that the plots can be on the same graph. A comparison of the
numerical results with the perturbation theory in the figure, displays the time for
which the gravity current propagation is inhibited by rotation. Also it is shown that
with rotation, the gravity current oscillates after the front reaches the Rossby radius
of deformation instead of stopping completely. Figure 4 demonstrate that without
rotation, the front reaches a constant velocity with and without slope; but the velocity
of the front is higher on the sloping surface by about 20 %, which is larger than
the theoretical estimate of § 2.2. Note that if the front speed UF is normalized on
the average height H (t)(� 0.3H0), it is found that the local ratio UF /(g′H )1/2 � 1.0,
which is close to the value found in many two-dimensional and three-dimensional
experiments. On a slope of σ = π/2, the local ratio is about 1.2, which is higher
than for the laboratory experiments (where surface stress is more important) (B&L).
With rotation, the gravity current front first halts (and reverses) at f tF ≈ 2.25 with
and without slope, showing that the slope has a weak effect on the time required
for the front to stop. The dashed line in figure 4 indicates the time where the
rotation is imposed (t = TR) upon the gravity current has reached constant velocity.
The perturbation theory, described in § 2.1.3, leads to an estimated time when the
rotating gravity current halts f tF =

√
2. The dash-dot line in the same figure shows

that the theoretical extrapolation for tF is an underestimate by about 50 %. Slope
results in figure 4 are consistent with the theory of § 2.2.3 that the current even halts
on a slope (which is not unexpected). Note that the time at which the front halts is
approximately the same with and without the slope. The Eulerian simulations show
persistence of vortex structures owing to the absence of three-dimensional breakdown,
thence, baroclinic instability is being suppressed.
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Figure 4. (a) Position of the front. (b) Velocity of the front. Numerical simulations of the two-
dimensional density current using non-hydrostatic (inviscid) Eulerian equations for H0/D = 1/5
as a function of dimensionless time and slope σ . Note that rotation is initiated at t = TR and
t − TR = tF . �, f =0 s−1 and σ = 0; �, f = 0 s−1 and σ = π/12; �, f =1.5 s−1 and σ = 0; �,
f = 1.5 s−1 and σ = π/12. – · – the time when the velocity of the front decreases to zero. The
timeline is an estimate based on the perturbation theory.

Density contour plots at the dimensionless time f tF = 2.25, are shown in figure 5.
For these simulations only the initial current height H0 and half of the length of the
channel are plotted. Figure 5(a) corresponds to the case where the slope is zero and
figure 5(b) depicts the gravity current density for a slope σ = π/12. Note how on the
slope the ‘head’ of the current is higher and the centre is more depressed.

Note how the contours of the transverse velocity U2, plotted in figure 6 for the same
time, extend into the external flow, as shown in the linear theory. The dashed lines
in the figure indicate regions where the transverse velocity is positive and the solid
lines, regions of negative transverse velocity. The maximum value for the velocity U2
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Figure 5. Non-hydrostatic Eulerian numerical simulations for two-dimensional gravity
currents with rotation (initiated at time TR = 4.5f −1). Density fields for H0/D = 1/5, f tF = 2.25,
H0/R0 = 1/2, LR/R0 = 0.33. (a) slope σ =0, (b) π/2. The dashed line indicates the location of
the gravity current at t = 0.
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Figure 6. Non-hydrostatic numerical simulations of the two-dimensional inviscid density
current, showing contour plots of the transverse velocity U2 and of the interface positions.
(a) Transverse velocity U2 of a gravity current for slope σ = 0 and (b) σ = π/2. The contour
levels are (a) −1 � U2/UF � 5 by increments of 0.3 and (b) −2 � U2/UF � 7 in increments of
0.45. Point (i) is the location of maximum transverse velocity inside the current and point
(ii) is the location of maximum transverse velocity outside of it. The parameters used in
the simulations are: H0/D = 1/5, f tF = 2.25, H0/R0 = 1/2, LR/R0 = 0.33. The dash-dot line
indicates the location of the gravity current at t = 0. Note the non-hydrostatic velocity field
outside the current.
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does not occur at the foremost leading position of the front. As the dynamics shows,
the magnitude of the transverse velocity U2 is higher for gravity current fronts on
sloping surfaces than fronts on horizontal surfaces. Note that for σ =0, the maximum
transverse velocity U2 is of the order of + 5 of the front speed UF inside the current
and −1 outside of it. The latter results from the non-hydrostatic velocity field. These
results are also in accord with the theory of § § 2.1.3 and 2.2.3.

3. Dynamics of axisymmetric gravity currents under the shallow-water
approximation

3.1. Numerical simulation of whallow-water equations with ‘wetted’ surface

3.1.1. Scaling of variables

As explained in § 2 and Appendix A, the front propagation velocity in a non-
rotating fluid may be scaled (this scaling follows from the balance of the horizontal
pressure gradient and inertia term) as

d R

d t
= UF0

= C1(2Hg′)1/2, (3.1)

where the constant C1 is of order unity, and it takes into account the specific geometry
of the current and bottom friction (e.g. Rottman & Simpson 1983). The conservation
of mass for an axisymmetric gravity current (assuming a constant similar form of the
current, which § 2 showed is approximately valid) gives

H0R
2
0 = HR2. (3.2)

Integrating (3.1) and using (3.2) leads to(
R2 − R2

0

)
R2

0

=
2C1t(2 g′H0)

1/2

R0

. (3.3)

The front propagation velocity UF in a rotating fluid is lower than that in the
non-rotating flow, but when f t � 1 is of the same order (see § 2). Thence,

UF =
d R

d t
= UF0

φ(f t, LR/R0), (3.4)

where UF0
is the front velocity in a non-rotating fluid given by (3.1). Here, φ is a

dimensionless function of f t and LR/R0 that depends on the dynamics of the whole
current and on local processes of the flow. From (3.2)–(3.4), we obtain

R∗2
=

(
R2

/
R2

0 − 1
)

2C1(LR/R0)
=

∫ f t

0

φ(τ, LR/R0) dτ

= Φ(f t, LR/R0). (3.5)

3.1.2. Computational model

In a second set of numerical calculations, the evolution of the current is studied
when f t � 1 using the shallow-water approximation with small level of frictional
losses corresponding to very high Reynolds numbers. In order to avoid imposing a
front condition, the domain boundary is sufficiently long to contain the gravity current
and a thin layer of fluid on the horizontal surface (wetted surface) is considered.
The speeds of propagation in our simulations were scaled following the balance of
horizontal pressure gradient and inertial terms through a constant C1 (see Mahalov
et al. 2000). An analysis is given in Appendix A.2 of how such a front oscillates.
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Shallow-water theory was for example shown by Rottman & Simpson (1983) and
Bonnecaze et al. (1995) to describe well the the evolution of gravity currents without
rotation. This approach differs from Bonnecaze et al. (1995) and Ungarish & Huppert
(1998) who used the same condition at the front as for non-rotating flow. Note that
Mahalov et al. (2000) focused on the details of the front only for times up to about
3f −1, so that oscillatory effects were not considered.

The two-dimensional shallow-water equations are of the form of St Venant
equations with constant Coriolis parameter f . These are taken as the model of
a shallow layer of turbulent fluid. In using these equations we assume that: (a) fluid
is incompressible; (b) the gravity current is created by the release of a liquid into
an ambient fluid; (c) vertical acceleration is negligible; (d) shear stresses effects are
negligible at the free surface; (e) bottom slope is small; (f ) friction losses are computed
using phenomenological turbulent drag formulae. In our numerical simulations, we
consider only one layer of shallow fluid (heavy layer), the layer interface is assumed
to be the ‘free-surface’ in our computation and shear stresses at the interface are
being neglected. If we define the following depth-averaged quantities

u1 =
1

H

∫ H+zb

zb

U1 dz, u2 =
1

H

∫ H+zb

zb

U2 dz, (3.6)

the two-dimensional depth-averaged equations of motion can be written as:

∂H

∂t
+ ∇ · (H u) = 0, (3.7)

∂H u
∂t

+ u · (∇H u) = −f ez ∧ H u − g′H∇(H + zb) − ∇H T − T b, (3.8)

where ∇ = (∂/x1, ∂/x2). Here, H is the water depth, u = (u1, u2) represents the
Cartesian depth-averaged velocity components in the x1- and x2-directions, x3 is
the vertical direction, zb is the bottom elevation (zb = 0 in our case), f =2Ω is the
Coriolis parameter, t is the time, g′ = g�ρ/ρ0 is the reduced gravity acceleration;
T b = (τbx1

, τbx2
) are the bottom shear stress components and T = (Tx1x1

, Tx1x2
, Tx2x2

)
are the depth-averaged effective stress components. In our formulation, the effective
stress components are neglected and the shear stresses on the bottom surface are
approximated by using the Chezy formulae τbx1

= g′u1(u
2
1 + u2

2)
1/2/C2 and τbx2

=
g′u2(u

2
1 +u2

2)
1/2/C2, where C is the Chezy constant (Vreugdenhill 1993). Computations

were performed without friction (C = ∞) and with friction, taking the standard
value for a turbulent flow where C = 80. (The frictional calculation for limited time
f t < 10 had been computed before by Mahalov et al. 2000.) We found that the front
structure and current dynamics are only slightly changed if friction is included, but
the magnitude is significantly reduced.

In the numerical simulations, the governing equations (3.7)–(3.8) were written in
conservation form. The physical domain was transformed to a rectangle by means of
a mapping technique and the numerical integration was performed using an explicit
finite-difference flux-vector method (Pacheco & Pacheco-Vega 2003). The boundaries
of the domain were kept constant during the computation.

3.1.3. Results of numerical simulations

Numerical simulations are carried out with initial conditions satisfying LR/R0 =
0.33, 0.44 and 0.66. The release of the fluid is from rest and with background rotation
from t = 0. The normalized numerical results for the radius are plotted in figure 7
for the frictionless condition for the initial adjustment period (f t � 10) which means
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Figure 7. Numerical simulation of the hydrostatic development of a frictionless axisymmetric
density-driven current, when f t ∼ 1. The non-dimensional radius function R∗2 is plotted as a
function of the non-dimensional time f t and different ratios LR/R0(=Bu1/2): �, LR/R0 = 0.33;
�, LR/R0 = 0.44; �, LR/R0 = 0.66. The rotation is applied at t = 0.
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Figure 8. Numerical results for the hydrostatic asymptotic development of an axisymmetric
density current where f t � 1. The non-dimensional radius function R∗2 is plotted as a function
of f t: �, LR/R0 = 0.33; �, LR/R0 = 0.44; �, LR/R0 = 0.66.

less than about half a rotation period. The time to the first maximum in the recent
experiment results of Hallworth et al. (2001) occurs at f t ≈ 7 − 9, and compares well
with the numerical simulation where f t ≈ 8 − 9.

In figure 8, the radius is presented on a log–log plot in order to compare with the
asymptotic theory of § 3.2. These results using the shallow-water model show that the
radial velocity not only increases, but when f t ≈ 9 for frictionless flows (which maybe
an overestimate by 50 %, cf. figure 8), it reverses. So the radius stops increasing and
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Figure 9. Comparison of the non-dimensional function R∗2 when f t � 1 between the asymp-
totic hydrostatic numerical simulation where friction is being considered as defined by C, and
experiments of Hallworth et al. (2001). (a) Numerical results with C = 80: �, LR/R0 = 0.33;
�, LR/R0 = 0.44; �, LR/R0 = 0.66. (b) Results from experiments of Hallworth et al. (2001): �,
LR/R0 ≈ 2 (R11); �, LR/R0 ≈ 3 (R4).

begins to oscillate (whether there is friction or not). The oscillations in R∗2 (defined
by (3.5)) decrease in amplitude with time (which is expected from the linear theory
of § 3.2) with and without friction. Their period is up to 30 % greater than 2π/f ,
i.e. one rotation period. The normalized amplitudes of oscillations are dependent on
the LR/R0 ratio as given by (3.5), however, the period of oscillation is unaffected
by LR/R0 for the range of values considered in our numerical simulations. In the
experimental observations of Hallworth et al. (2001) for LR/R0 ≈ 1.5−3, their angular
frequency ω was found to be about 5 % higher than the inertial frequency f =2Ω .

The amplitude of oscillations for the numerical simulations with bottom friction and
the experimental results of Hallworth et al. (2001) are depicted in figure 9. Without
friction, the mean radius function 〈R∗2〉(f t) increases approximately in proportion
to

√
f t , as shown in figure 8, whereas with friction, the increase in 〈R∗2〉(f t) is

reduced (see figure 9a). The experimental results shown in figure 9(b) correspond
to the experiments labeled as R4 (LR/R0 ≈ 3) and R11 (LR/R0 ≈ 2) of Hallworth
et al. (2001) normalized to accord with (3.5). The amplitude of oscillations of our
numerical results when friction was considered, is approximately of the same order
as the experiments of Hallworth et al. (2001).

The solution of the shallow-water equations (on a thin fluid surface layer) results in
an oscillatory growth of the mean radius rather than a fixed constant asymptotic limit
R∞ which results from inviscid front analysis on a plane (see AppendixA.1). Similar
large amplitude oscillations are also observed in other simulations of axisymmetric
gravity currents using a three-dimensional viscous Navier–Stokes code at a Reynolds
number of about 103. This confirms that the shallow-water simulations are valid.
These results will be reported elsewhere.

The radius of the front is plotted in figure 10 for a comparison to be made with the
non-hydrostatic results using the Eulerian non-hydrostatic simulation described in
§ 2.3 for the same LR/R0 = 0.33 as figure 4. The dashed line in figure 10 indicates the
time where the effect of rotation begins, the dash-dot line in the same figure, indicates
the time where the front stops according to the two-dimensional perturbation theory.
The symbol � corresponds to the non-rotating case, � corresponds to the rotating
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Figure 10. Comparison for the non–dimensional function R∗ obtained with shallow-water
hydrostatic simulation without friction for LR/R0 = 0.33. �, no rotation; �, rotation initiated
at t = 4.5f −1; �, rotation initiated at t = 0.
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Figure 11. Computed depth motion for different fixed radial positions. The numerical condi-
tions are: LR/R0 = 0.33 and Chezy constant C = ∞. (a) Dimensionless depth for region where
motions are approximately hydrostatic. �, corresponds to R/R0 = 0.5; �, corresponds to
R/R0 = 1.6. (b) Non-dimensional height for transitional region at a fixed location R/R0 = 3.8.
Showing here the front location oscillates as it passes through a given point.

case when the velocity is initiated at t =4.5f −1 s and � when rotation was initiated at
t = 0. Note that the radial velocity of the front decreases at a slower pace compared
to the Eulerian non-hydrostatic two-dimensional simulation. A difference would be
expected from the linear theory of § 2, which shows that for f t � 1, non-hydrostatic
effects are significant.

To understand the oscillatory behaviour of the gravity current with rotation, it
is necessary to examine how the depth varies with time at various radii. The result
presented in figure 11(a) shows how in the centre of the current where R/R0 = 0.5
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Figure 12. Schematic diagram for wave motion on a gravity current front, showing the
different regions as energy leaks out from the centre.

and R ∼ 1.7LR , where LR is the Rossby deformation radius, the depth oscillates (over
a period ∼ 2π/f ). Also the amplitude decreases slowly (by a factor 1/e) over five
turnover periods. However, outside the initial radius R0 and greater than LR , the
depth H (R) rises to 1/8 of H at R/R0 = 0.5 and then oscillates at an amplitude that
slowly increases to a level comparable to that in the central region of the current
(where the current was started). At a larger radius of 3.8R0 (see figure 11b) when the
front reaches this point, the oscillation amplitudes are less than 1/100 of those in the
centre; however they are comparable to the mean depth because the front position
itself is oscillating. Over five turnover periods, their relative magnitude decreases.
Here the gravity current behaves similarly to water waves approaching a shore-line. It
appears from other computations not presented here, that even with strong rotation,
i.e. LR <R0, a gravity current set-up within the radius R0 oscillates as it spreads out.
Initially, outside the radius LR the current level is quite smooth, but the oscillations
leak out from the central region. When these oscillations reach the front, they cause
it to be displaced. The period of all these oscillations is comparable to that of the
rotation period (see figure 12).

3.2. Oscillating solutions and asymptotics at large times

A gravity current can be divided into three regions shown in figure 12: (i) a central
region with approximately constant mean depth; (ii) a transitional region described
by equations of motion for long waves in water of varying depth; and (iii) a frontal
region which is characterized by non-hydrostatic effects and wave breaking. The area
of the latter region shrinks with time and its influence on the overall gravity current
behaviour diminishes. A local analysis of the region is included in Appendix A.2.

In the central region (i) the motions are approximately hydrostatic and the
shallow-water equations with constant mean depth can be used to study the overall
averaged properties of the current behaviour. The dynamics in region (ii) are similar
to the behaviour of long waves on a beach analysed by Peregrine (1967). When water
waves approach a beach they usually increase in amplitude and break. Equations
corresponding to Boussinesq’s approximation are derived in Peregrine (1967) to
describe this phenomena. These are shallow-water equations with an additional dis-
persive term. The equations are formally valid before wave-breaking occurs. As the
wave approaches region (iii) it becomes higher and steeper; then the shallow-water
equations will not be valid since the wave will ultimately break.
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In this subsection we summarize published theory for the evolution of density
currents in the ‘trapped wave’ region (of figure 12) in the context of rotating shallow-
water equations (SWE) in order to extend linear theory to nonlinear oscillations when
f t � 1. As we showed in § 2.2, the density current has a low slope everywhere and the
motions are approximately hydrostatic. Therefore, it is appropriate to use the shallow-
water equations to study the overall averaged properties of the current behaviour.
This can be evaluated systematically by considering the effects of oscillations on the
density current dynamics, whose measure is the initial potential energy in relation to
that of the current and is proportional to the ratio LR/R0 =

√
Bu (Samah & Thorpe

1993).
Consider the governing equations (3.7)–(3.8) and neglect the bottom friction. The

height of the fluid is H = HΩ + h with average depth over the layer HΩ . Here, h

is the perturbation in the level which is distributed over a distance LR , as shown
in figure 12. The initial-value problem (3.7)–(3.8) consists in calculating u and h

given their initial distribution at t = tΩ ; the structure of its solutions for times f t � 1,
was described in Babin et al. (1997b,c) and Reznik et al. (2001) using asymptotic
methods.

For general initial condition for equations (3.7)–(3.8), both the fast changes due to
inertia-gravity wave activity and the slow change of potential vorticity (PV) are present
in the evolution of the initial disturbance (with special initial conditions, one or the
other component could be absent). The problem of nonlinear geostrophic adjustment
is to determine their mutual influence and interactions. The ‘fast’ hyperbolic field
consists of both ‘fast’ inertia-gravity waves propagating away from the region of the
initial disturbance and trapped waves (which Zeitlin, Medvedev & Plougonven 2003,
analysed for weakly nonlinear waves). The ‘slow’ field, characterized by potential
vorticity dynamics, is in geostrophic balance at leading order, where the fast and
slow components of motion are split. The fast component of motion is characterized
by oscillations resulting from the unbalanced part of the flow (non-zero horizontal
divergence and ageostrophic vorticity defined below). One part of the unbalanced
component is radiated away in the form of outgoing fast waves; another part is
captured by the potential vorticity and it oscillates without influencing its dynamics
at leading order. However, this ‘fast’ hyperbolic component evolves on the background
of the ‘slow’ PV component, producing significant modulation effects. The physical
reason for this ‘splitting’ is that, for the slow components, the Lagrangian potential
vorticity is conserved, while for the fast components, it consists of inertia–gravity
waves, which do not carry potential vorticity. The split corresponds to the well-
known gap in the spectrum of rotating shallow-water equations between these modes.
This split occurs for disturbances in both infinite and localized domains (continuous
spectrum) as well as periodic and cylindrical domains (discrete spectrum). We refer
to Gill (1982) for linear theory of waves on currents, to Babin et al. (1997b, c) and
Reznik et al. (2001) for in-depth mathematical studies of the nonlinear waves, and to
Stegner, Bouruet-Aubertot & Pinchon (2004) for laboratory experiments.

We are interested in the long-time behaviour (f t � 1) of solutions to (3.7)–(3.8) for
general the state of infinite two-layer fluid at t = t0. In our expression, t0 corresponds
to the time when the initial gravity current front is approaching its final state (i.e.
t0 ∼ f −1. To this end, let us express the potential vorticity Q in terms of the vorticity
ω = ∂u2/∂x1 − ∂u1/∂x2 as

Q =
ω + f

H
. (3.9)
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The potential vorticity is conserved in (3.7)–(3.8), and its equation for advection by
the total horizontal velocity u takes the form

∂Q

∂t
+ (u · ∇)Q = 0. (3.10)

Linearizing the initial-value problem (3.7)–(3.8) yields

∂u1

∂t
− f u2 = −g′ ∂h

∂x1

, (3.11a)

∂u2

∂t
+ f u1 = −g′ ∂h

∂x2

, (3.11b)

∂h

∂t
+ HΩ∇ · u = 0. (3.11c)

The aforementioned linear problem and its solutions are described in detail in
Gill (1982, § 7.3). It is important to remember that linear potential vorticity modes
correspond to zero-frequency eigenmodes in (3.11).

It is convenient to write (3.11) in terms of the ageostrophic variables (horizontal
divergence d = ∂u1/∂x1 + ∂u2/∂x2 and ageostrophic vorticity ωa = ω − g′�h/f ) in
order to study its oscillating solutions, i.e.

∂d

∂t
− f ωa = 0, (3.12a)

∂ωa

∂t
+ f

(
1 − L2

R�
)
d = 0, (3.12b)

∂h

∂t
+ HΩd = 0. (3.12c)

Clearly, the hyperbolic system (3.12) is linear, and the ageostrophic fields d and ωa

satisfy the linear wave equation. For example, for the field d we have from (3.12),

∂2d

∂(f t)2
− L2

R�d + d = 0. (3.13)

The initial condition that determines the form and amplitude of the oscillations for
the velocity field u and for the height field h at t = tΩ in (3.11), implies the initial
condition for the horizontal divergence d and the ageostrophic vorticity ωa .

The one-dimensional wave propagation in the context of linear rotating shallow-
water equations (described in Gill 1982) showed that, by using the stationary phase
method, the frequency of oscillations is equal to f , and the amplitude decays as
t → ∞ in proportion to (f t)−1/2. This is consistent with the general interpretation of
(3.11) given above.

The above results for the linear hyperbolic system (3.11) can be extended to the
nonlinear rotating shallow-water equations using a van der Pol technique for fast
singular oscillating limits (f t � 1) for nonlinear hyperbolic problems (Babin et al.
1997b,c, 2002). This method leads to the ageostrophic component being explicitly
solved in terms of the quasi-geostrophic component in the limit resonant equations.
The corresponding solutions which are obtained with explicit error estimates based
on resonances and delicate small divisor estimates describe nonlinear adjustment to
geostrophic states. The ageostrophic component describes transient motions before
the full solution reaches the geostrophic state. These asymptotic solutions generalize
the linear inertio-gravity wave solutions described above. A qualitative description is
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given here – for mathematical analysis see Babin et al. (1997b,c) and Jones, Mahalov
& Nicolaenko (1998).

In the first step in the derivation of the fast singular oscillating limit equations,
we apply a change of variables known as van der Pol transformation that eliminates
the linear term in (3.7)–(3.8). The resulting equation is averaged over resonances
between the fast inertio-gravity waves and the quasi-geostrophic (QG) field, and
the approximation we seek is derived from the averaged equations. The averaged
equations are the global envelope equations for all inertio-gravity waves; their
solutions split into quasi-geostrophic (horizontally non-divergent) and ageostrophic
(horizontally divergent) components. The quasi-geostrophic component is then
decoupled from the ageostrophic modes by projecting it onto quasi-geostrophic modes
(Babin et al. 1997a, c, Reznik et al. 2001). The resulting equation (in physical space)
is called the quasi-geostrophic potential vorticity equation.

When applied to the rotating SWE, this technique decomposes the solutions of the
initial-value problem into three terms. The first is obtained from the quasi-geostrophic
approximation to the SWE which are solved with initial data projected onto quasi-
geostrophic modes. The second represents the asymptotic ageostrophic component of
the flow in the limit f t � 1. It is obtained from an evolution equation coupled with
the quasi-geostrophic component of the flow. This evolution equation has time- and
space-dependent coefficients which depend on the QG component of the flow. The
last term is the remainder and it is negligible for f t � 1. A crucial property of the
dispersion law for rotating SWE is that (unlike in most nonlinear wave systems) three
wave resonances are non-existent (Babin et al. 1997b).

This analysis shows when the linear theory for oscillations predicts the same
frequency as for nonlinear oscillations, at least for region (i) of figure 12 for shallow
layers on flat surfaces. Combining this nonlinear analysis of the ‘flat’ part of the
current and an approximate frontal analysis (in Appendix A.2) shows that the
frequency of slope oscillations is f . The significant wave oscillations on the current
may lead to reflection of waves from the front (which are not analysed here). There
seem to be no physical or mathematical reason for the generation of sub-harmonic
oscillations.

4. Conclusions
The theoretical and computational studies presented here show how a gravity cur-

rent changes as it is influenced by Coriolis forces and forms into a geostrophic front.
We conclude that some concepts in the current theory and practical applications
require modification. First, there is no universal tendency for a disturbed dense layer
or current with horizontal scale R0 to progress monotonically towards a state of
geostrophic equilibrium. Since the Rossby deformation radius LR (typically 300 km
for mid-tropospheric disturbances of depth H ≈3 km) is of the same order as R0,
fronts generally oscillate rather than monotonically settle towards an equilibrium
state. These oscillations are associated with horizontal divergence and ageostrophic
vorticity and are nonlinear, although linear theory provides useful information. In
the atmosphere, these oscillations may affect the local weather. Analytical models
(e.g. Hoskins & Bretherton 1972), which are based on balanced SG equations, do not
model correctly the mean motion in these conditions. Because of the rapid change
in the ageostrophic processes, numerical models require a resolution of the order of
H/10 in space and H/(10UF ) in time to represent the unsteady frontal processes. Our
theory shows why geostrophic fronts do not have the remarkably constant structure
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of non-rotating currents where the Froude number of the front (i.e. UF /(g′H )1/2) is
close to unity in a wide range of flow situations (Simpson 1997).

Secondly, the front is only likely to have a universal form in very wide currents when
LR/R0 is small. However, over a wide range of LR/R0, the slope tends to be of the
order of f/N when f t � 1 (where N =

√
g′/H ). In this case the aspect ratio H/R(t)

is much less than the slope of the front. In general, the flow structure in the current
depends on the initial value of LR/R0 and any unsteady forcing of the density current,
e.g. by thermal convection in a cyclonic disturbance. Our numerical simulations and
theory confirm the experimental results of Chia et al. (1982); Mahalov et al. (2000)
and others, that the slope of the front decreases rapidly from 60◦ when rotation is
applied. The theory is consistent with geophysical estimates.

Thirdly, as a result of linear effects, the whole current and the front oscillate with
frequency f , while nonlinear effects cause the front to continue to move forward,
rather than tending to reach a fixed asymptotic position with mean radius R∞. The
latter conclusion is consistent with the experimental results of Hallworth et al. (2001).
It is broadly consistent with the observed tendency of atmospheric gravity currents
to move faster when they have high fluctuations.

The numerical solution of the shallow-water equations shows the front moving
forward at an average velocity proportional to (f t)−1/2, which is the same time scale
as for the decay of linear waves on the current. However, a nonlinear theory for this
net movement of the front has not yet been developed.

In order to assess the effects of surface shear stresses, we compare the depth of
the layer current (H ) with the thickness δ of the Ekman layer and the time scale for
viscous shear effects to affect the flow. For a laminar flow, δ =

√
ν/f ∼ 10−3 m. Here,

ν is the kinematic viscosity. Then the time for viscosity to affect the geostrophic front
is of order f −1(H/δ). Since this decay time is clearly greater than f −1, laminar-flow
viscous effects are negligible at high Reynolds numbers. Note also that H � δ for most
flows. In a turbulent flow where δ ∼ 1/10(u∗/f ), where u∗(∼ |u|/10) is the ‘friction’
velocity, the criterion is H � 10−2u∗/f , which is satisfied in atmospheric geostrophic
fronts. (Note here that the thickness of the shear layer δ ∼ 0.2u∗/f ∼ 500 m, so that
for many gravity currents in the atmosphere the shear stresses are significant.) The
idealized theoretical approach was extended to examine the effects of terrain slopes.
The effects of rotation are important because the analysis shows that even quite small
slopes σ (greater than the slope of the front which is very small in rotating flow)
may have a large effect on anticyclonic frontal motion. This may lead to considerable
mixing. By comparison, without rotation, the theory confirms laboratory experiments
that the speed and the form of the gravity current front is unchanged on sloping
surfaces even as large as 30◦.

The mathematical analysis and precise numerical simulations of fronts developed
here can be applied to various problems involving density currents and fronts in
flows with continuous stratification. The ageostrophic processes analysed here require
more detailed numerical simulations that are currently used in numerical weather
predictions and oceanographic codes.
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Appendix
A.1. Relating the front to the bulk structure

Consider an axisymmetric gravity current with density ρ + �ρ on a plane, in a fluid
of density ρ. It is released at t = 0 and it has the same rotation rate Ω0 as the
fluid, height H0, radius R0 as it tends to an asymptotic limit H∞, R∞. We note that
the following conservation laws hold in a fixed non-rotating system of coordinates
(assuming a simple shape of each stage so that the main features are defined by the
height H and the radius R, although, as shown in § 2 there is some significant energy
in slopes near the front on a scale LR).

(a) Mass conservation

H0R
2
0 ∼ HR2 ∼ H∞R2

∞. (A 1)

(b) Kelvin’s theorem. The circulation around a vertical axis in an axisymmetric
gravity current is unaffected by buoyancy forces, so that

Γ0 ∼ vθ0
R0 = Γ (t)(∼ ΩR2 ∼ vθR) = Γ∞ = vθ∞R∞. (A 2)

Note that this is consistent with potential vorticity conservation, where ΩαH , since
from (A 1) and (A 2)

Ω ∼ vθ

R
∼ vθ0

H

H0

∼ Ω0H

H0

.

Local analysis of the equilibrium front shows that the centripetal total radial
pressure gradient ∂p∗/∂r is equal to the pressure gradient outside the current, ∂p/∂r

plus the hydrostatic contribution, i.e.

∂p∗

∂r
∼ v2

θ

R
= −g′α∞ +

∂p

∂r
, (A 3a)

where g′ = g�ρ/ρ and ∂p/∂r = Ω2
0R∞. Since vθ = Ω0R∞ + �vθ , and f = 2Ω0

�vθ = −g′ α∞

f
, (A 3b)

when (�vθ ) 	 (Ω0R∞). This is equivalent to Margules’ (1906) formula; but when
R∞ � R0 (see below), (A 2) shows that vθ∞ = Ω0R

2
0/R∞ 	 Ω0R0, so that

�vθ = −Ω0R∞ = −g′α∞

Ω0

= −2g′α∞

f
(A 3c)

(i.e. twice the Margules limit).
We can now estimate how the front slope α∞ relates to the overall shape of the

current H/R, because this affects the oscillations within the current. As a measure of
this relation we define a re-scaled front slope

α̃ = α∞/(H/R) ∼ Ω0�vθ

g′H0

R∞

R2
0

, (A 4)
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where α̃ is dimensionless. From (A 2), Ω0R∞ + �vθ = Ω0R
2
0/R∞, so that

�vθ = −
Ω0

(
R2

∞ − R2
0

)
R∞

(A 5a)

and from (A 3b), (A 3c),

α∞ ∼ Ω2
0

g′

(
R∞ − R0

R∞

)
(R∞ + R0) . (A 5b)

R∞ is, to first approximation, determined by the local gravity current velocity
√

g′H ,
i.e.

d R

d t
=

d Φ

d t

√
g′H =

d Φ

d t

[
g′R2

0H0

R2

]1/2

, (A 6a)

where from § 3.1, Φ(t) is an O(1) variable that decays to zero on time scale f −1.
Thence, (

R2

R2
0

− 1

)/
(LR/R0) = Φ(tf, LR/R0). (A 6b)

Note that from § 2,3, the radial displacement of the front, in order of magnitude
terms, is

(R∞ − R0) ∼
√

g′H0Ω
−1
0 ∼ LR0

, (A 6c)

where

LR0
=

√
g′H0

Ω0

(A 6d)

is the Rossby radius of the initial current.
Thence, from (A 6c) if L2

R0
	 R2

0 , R∞ ∼ R0 so that from (A 5b) α∞ ∼ Ω2
0LR0

/g′.
Therefore,

α̃ = α∞R∞/h∞ ∼ R0/LR0
� 1. (A 7a)

Similarly, from (A 6c) if L2
R0

� R2
0 ,

R∞ ∼ LR0
� R0 (A 7b)

so that α∞ ∼ Ω2
0LR0

/g′ and α̃ ∼ (Ω2
0LR0

/g′)(L3
R0

/H0R
2
0) ∼ L2

R0
/R2

0 � 1. Thus, in both
cases α̃ � 1, so that the slope of the front (if it reaches equilibrium) is greater than
the average slope of the current (∼ H∞/R∞), but less than the initial slope of (π/3).
Thus, since the front undergoes a substantial change on a time scale of order f −1,
oscillations must develop. Numerical simulations show that these oscillations cause
the ultimate value of R∞ to be larger than the estimates given in (A 6c) and (A 7b).
Simulations using a Navier–Stokes code (Re ∼ 103) show that in the slow decay to
the asymptotic state, slopes in the interior of the current are greater than those of the
front edge.

A.2. Oscillations of the front

We develop a simple linear analysis to indicate how the front oscillates. Consider the
asymptotic front perturbed by a small angle α′ at t = 0, but which is larger than the
very small asymptotic value α∞. It follows that

−∂p′

∂x
= g′α′ at t = 0,
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over the distance where the slope changes, which is of order LR0
. Assume an oscillation

develops where the front is moving outwards, i.e. ∂u′/∂t > 0, because ∂v′/∂t = − f u′,
so that v < 0, and thence u < 0. A model equation for small perturbations is

∂u′

∂t
− f v′ = −∂p′

∂x
= g′α′(t),

∂v′

∂t
+ f u′ = 0.

Thence, if α′(t) is a step function, α′(t) = αoH (t),

∂2u′

∂t2
+ f 2u′ = g′αoδ(t),

with a solution

u′ =
g′α′

f
(sin(f t)) H (t), (A 8)

This frequency is independent of LR/R as observed in experiments. As the surface
adjusts to maintain constant mass, a rarefaction wave travels back along the front,
a positive wave travels forward, etc. Note that if the wavelength of these waves is
λ= λ̃R ∼ LR , then resonance occurs if their frequency is equal to the frequency of the
front oscillations f . The frequency c/λ of oscillation in the central region (ωc) is

ωc ∼ c

λ
=

√
g′H

λ̃R
∼ f or

LR

R
∼ λ̃. (A 9)

Thus, large oscillations occur if LR0
/R0 ∼ 1, whereas small oscillations will be present

when LR0
/R0 	 1. Note that in Hallworth et al. (2001) experimental results ω � f

for LR0
/R0 � 1. Our numerical simulations for rotation dominated flows (LR0

/R0 	 1)
yield approximately the same frequency ω � f . In both cases resonant like oscillations
occur coupling the flow in regions (i), (ii) and (iii) of figure 12.
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